lunes, 14 de diciembre de 2015

MITOLOGIA ESTELAR


Mitología estelar

Tal como ha sucedido con ciertas constelaciones y con el propio Sol, las estrellas en general tienen su propia mitología. En estadios precientíficos de la civilización se las ha observado como entidades vivientes (animismo), dotadas de fuerza sobrenatural. Se las ha identificado, eventualmente, con el alma de los muertos, o bien con dioses o diosas. La trayectoria de las estrellas y su configuración en el espacio, aún hoy forman parte de algunos constructos culturales ligados al pensamiento mágico.

 

 


Legado estelar

Para los habitantes del planeta Tierra, las estrellas, además de componer el mapa celeste, tienen otra finalidad menos conocida pero mucho más importante: legarnos una variedad de elementos casi imprescindibles para sobrevivir. Así por ejemplo, los componentes del acero se cocieron en alguna estrella a temperaturas de varios miles de millones de grados, que con la explosión de una supernova fueron lanzados al espacio para finalmente llegar hasta nuestro planeta azul. Gracias a ello tenemos el vital oxígeno, el oro y los diamantes. El propio ser humano está compuesto por materiales sintetizados previamente en las estrellas. Quizá por todo esto pueda entenderse que el grupo B²FH encabezase su ya clásico artículo con esta cita de Shakespeare.






CLASES DE LUMINISIDAD


La clasificación de Harvard de tipos espectrales no determina unívocamente las características de una estrella. Estrellas con la misma temperatura pueden tener tamaños muy diferentes, lo que implica luminosidades muy diferentes. Para distinguirlas se definieron, en Yerkes, las clases de luminosidad. En este sistema de clasificación se examina nuevamente el espectro estelar y se buscan líneas espectrales sensibles a la gravedad de la estrella. De este modo es posible estimar su tamaño.

Ambos sistemas de clasificación son complementarios.

Aproximadamente un 10 % de todas las estrellas son enanas blancas, un 70 % son estrellas de tipo M, un 10 % son estrellas de tipo K y un 4 % son estrellas tipo G como el Sol. Tan solo un 1 % de las estrellas son de mayor masa y tipos A y F. Las estrellas de Wolf-Rayet son extremadamente infrecuentes. Las enanas marrones, proyectos de estrellas que se quedaron a medias a causa de su pequeña masa, podrían ser muy abundantes pero su débil luminosidad impide realizar un censo apropiado.
 
Clase Descripción
  0   Hipergigantes  
  Ia   Supergigantes Luminosas  
  Ib   Supergigantes
  II   Gigantes luminosas
  III   Gigantes
  IV   Sub-gigantes
  V   Enanas (Sol)
  VI   Sub-enanas
  VII   Enanas blancas
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Clasificación gravitacional de estrellas

Las estrellas pueden clasificarse de acuerdo a cuatro criterios gravitacionales instaurados recientemente por la Unión Astronómica Internacional en el 2006. Esta clasificación estelar de la UAI es la más aceptada y comúnmente usada.

Clasificación por centro gravitacional estelar

El primer criterio es la presencia o ausencia de un centro gravitacional estelar, es decir si forman parte de un sistema estelar. Las estrellas que forman parte de un sistema estelar (presencia de centro gravitacional estelar) se denominan estrellas sistémicas. Las estrellas que no forman parte de un sistema estelar (ausencia de centro gravitacional estelar) se denominan estrellas solitarias.

Clasificación de estrellas sistémicas por posición

Si una estrella es sistémica (forma parte de un sistema estelar) puede ser a su vez de dos tipos. Las estrellas centrales son aquellas estrellas sistémicas que actúan como centro gravitacional de otras estrellas. Esto quiere decir que otras estrellas las orbitan. Las estrellas sistémicas que orbitan a una estrella central se denominan estrellas satélites.

Clasificación de estrellas por agrupación gravitacional

Esta clasificación de estrellas se basa en distinguir dos tipos de estrellas dependiendo de si estas se agrupan con otras estrellas mediante fuerzas de atracción gravitacional. Esta clasificación refiere a dos tipos de estrellas (cumulares e independientes) de acuerdo a si se encuentran o no unidas a otras estrellas y, además, esta unión no se debe a la presencia de un centro gravitacional estelar; es decir, ninguna estrella gira alrededor de otra y más sin embargo se encuentran unidas gravitacionalmente.
Las estrellas cumulares son aquellas que forman cúmulos estelares. Si el cúmulo es globular, las estrellas se atraen por gravedad (las estrellas se atraen mutuamente). Si el cúmulo es abierto, las estrellas se atraen por gravitación en donde el centro gravitacional es el centro de masa del cúmulo (las estrellas orbitan un centro gravitacional en común que las mantiene unidas). Las estrellas independientes son aquellas que no forman cúmulos estelares con ninguna otra estrella. Sin embargo hay estrellas independientes que sí forman parte de un sistema estelar pues orbitan estrellas o son centro de otras. Este sería el caso de estrellas sistémicas-independientes.

Clasificación de estrellas por sistema planetario

Las estrellas que forman parte de un sistema planetario se denominan estrellas planetarias, entendiéndose por sistema planetario al conjunto de la estrella o sistema estelar central y los distintos cuerpos celestes (planetas, asteroides, cometas) que orbitan a su alrededor. Por contra, se denominan estrellas únicas a las que no poseen otros cuerpos que las orbiten.

 
 
 
 
 
 

COMPOSICION



 La composición química de una estrella varía según la generación a la que pertenezca. Cuanto más antigua sea más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75 % de hidrógeno y 23 % de helio. El 2 % restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella naciera. Estos porcentajes son en masa; en número de núcleos, la relación es 90 % de hidrógeno y 10 % de helio.

En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos o poblaciones. Las que tienen una cierta abundancia se denominan de la población I, mientras que las pobres en metales forman parte de la población II. Normalmente la metalicidad de una estrella va directamente relacionada con su edad: las de la población I son más jóvenes comparadas con las de la población II. Estas últimas abundan en el halo galáctico, mientras que las estrellas de población I son más frecuentes en regiones cercanas al disco galáctico.

Por otra parte, la composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas solo queman un 10 % de su masa inicial, por lo que globalmente la metalicidad de una estrella no aumenta mucho durante su vida. Además, las reacciones nucleares solo se dan en las regiones centrales de la misma. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.
 
 
 
 
 

La estrella prototípica

 
 
 
 
 
 
 
 
 
 
 
 

El Sol es tomado como la estrella prototípica, no porque sea especial en ningún sentido, sino porque es la más cercana a la Tierra y por tanto la más estudiada por los humanos. La mayoría de las características de las estrellas se suelen medir en unidades solares. Las magnitudes solares son usadas en astrofísica estelar como patrones.
La masa del Sol es:
Msol = 1,9891 × 1030 kg
y las masas de las otras estrellas se miden en masas solares abreviado como Msol.
 
 
 

          Clasificación

 
La primera clasificación estelar fue realizada por Hiparco de Nicea y preservada en la Cultura Occidental a través de Ptolomeo, en una obra llamada almagesto. Este sistema clasificaba las estrellas por la intensidad de su brillo aparente visto desde la Tierra. Hiparco definió una escala decreciente de magnitudes, donde las estrellas más brillantes son de primera magnitud y las menos brillantes, casi invisibles con el ojo desnudo, son de sexta magnitud. Aunque ya no se emplea, constituyó la base para la clasificación actual.
La clasificación moderna se realiza a través del tipo espectral. Existen dos tipos de clasificación, basados en dos catálogos diferentes: el catálogo de Henry Draper (HD) realizado en Harvard a principios del siglo XX, el cual determina lo que se denomina Tipo espectral, y el catálogo del Observatorio Yerkes, realizado en 1943, el cual determina lo que se denomina Clase de luminosidad.
 
 
 
 

 
 
 
 
 
 
 
 

FORMACION Y EVOLUCION



Las estrellas se forman en las regiones más densas de las nubes moleculares como consecuencia de las inestabilidades gravitatorias causadas, principalmente, por supernovas o colisiones galácticas. El proceso se acelera una vez que estas nubes de hidrógeno molecular (H2) empiezan a caer sobre sí mismas, alimentado por la cada vez más intensa atracción gravitatoria. Su densidad aumenta progresivamente, siendo más rápido el proceso en el centro que en la periferia. No tarda mucho en formarse un núcleo en contracción muy caliente llamado protoestrella. El colapso en este núcleo es, finalmente, detenido cuando comienzan las reacciones nucleares que elevan la presión y temperatura de la protoestrella. Una vez estabilizada la fusión del hidrógeno, se considera que la estrella está en la llamada secuencia principal, fase que ocupa aproximadamente un 90 % de su vida. Cuando se agota el hidrógeno del núcleo de la estrella, su evolución dependerá de la masa (detalles en evolución estelar) y puede convertirse en una enana blanca o explotar como supernova, dejando también un remanente estelar que puede ser una estrella de neutrones o un agujero negro. Así pues, la vida de una estrella se caracteriza por largas fases de estabilidad regidas por la escala de tiempo nuclear separadas por breves etapas de transición dominadas por la escala de tiempo dinámico (véase Escalas de tiempo estelar).

Muchas estrellas, el Sol entre ellas, tienen aproximadamente simetría esférica por tener velocidades de rotación bajas. Otras estrellas, sin embargo, giran a gran velocidad y su radio ecuatorial es significativamente mayor que su radio polar. Una velocidad de rotación alta también genera diferencias de temperatura superficial entre el ecuador y los polos. Como ejemplo, la velocidad de rotación en el ecuador de Vega es de 275 km/s, lo que hace que los polos estén a una temperatura de 10 150 K y el ecuador a una temperatura de 7 900 K.

La mayoría de las estrellas pierden masa a una velocidad muy baja. En el Sistema Solar unos 1020 gramos de materia estelar son expulsados por el viento solar cada año. Sin embargo, en las últimas fases de sus vidas, las estrellas pierden masa de forma mucho más intensa y pueden acabar con una masa final muy inferior a la original. Para las estrellas más masivas este efecto es importante desde el principio. Así, una estrella con 120 masas solares iniciales y metalicidad igual a la del Sol acabará expulsando en forma de viento estelar más del 90% de su masa para acabar su vida con menos de 10 masas solares. Finalmente, al morir la estrella se produce en la mayoría de los casos una nebulosa planetaria, una supernova o una hipernova por la cual se expulsa aún más materia al espacio interestelar. La materia expulsada incluye elementos pesados producidos en la estrella que más tarde formarán nuevas estrellas y planetas, aumentando así la metalicidad del Universo.












GENERALIDADES



   
Estas esferas de gas emiten tres formas de energía hacia el espacio, la radiación electromagnética, los neutrinos y el viento estelar y esto es lo que nos permite observar la apariencia de las estrellas en el cielo nocturno como puntos luminosos y, en la gran mayoría de los casos, titilantes.

Debido a la gran distancia que suelen recorrer, las radiaciones de las propias estrellas llegan débiles a nuestro planeta, siendo susceptibles, en la gran mayoría de los casos, a las distorsiones ópticas producidas por la turbulencia y las diferencias de densidad de la atmósfera terrestre (seeing). El Sol, al estar tan cerca, no se observa como un punto, sino como un disco luminoso cuya presencia o ausencia en el cielo terrestre provoca el día o la noche, respectivamente.

      
      RADIACION ELECTROMAGNETICA...





           VIENTO POLAR...




          ESTRELLAS EN EL CIELO NOCTURNO...






























¿Que es una estrella?





                          ESTRELLAS CELESTES


Una estrella es una enorme esfera de gas muy caliente y brillante. Las estrellas producen su propia luz y energía mediante un proceso llamado fusión nuclear. La fusión sucede cuando los elementos más ligeros son forzados para convertirse en elementos más pesados. Cuando esto sucede, una tremenda cantidad de energía es creada causando que la estrella se caliente y brille. A las estrellas se les encuentra en una variedad de tamaños y colores. Nuestro Sol es una estrella amarillenta de tamaño promedio. Las estrellas que son más pequeñas que nuestro Sol son rojizas y las que son más grandes que éste son azules. 





El equilibrio se produce esencialmente entre la fuerza de gravedad, que empuja la materia hacia el centro de la estrella, y la presión que ejerce el plasma hacia fuera, que, tal como sucede en un gas, tiende a expandirlo. La presión hacia fuera depende de la temperatura, que en un caso típico como el del Sol se mantiene con la energía producida en el interior de la estrella.

Este equilibrio seguirá esencialmente igual en la medida de que la estrella mantenga el mismo ritmo de producción energética. Sin embargo, como se explica más adelante, este ritmo cambia a lo largo del tiempo, generando variaciones en las propiedades físicas globales del astro que constituyen parte de su evolución.